Activation volume of selected liquid crystals in the density scaling regime
نویسندگان
چکیده
In this paper, we demonstrate and thoroughly analyze the activation volumetric properties of selected liquid crystals in the nematic and crystalline E phases in comparison with those reported for glass-forming liquids. In the analysis, we have employed and evaluated two entropic models (based on either total or configurational entropies) to describe the longitudinal relaxation times of the liquid crystals in the density scaling regime. In this study, we have also exploited two equations of state: volumetric and activation volumetric ones. As a result, we have established that the activation volumetric properties of the selected liquid crystals are quite opposite to such typical properties of glass-forming materials, i.e., the activation volume decreases and the isothermal bulk modulus increases when a liquid crystal is isothermally compressed. Using the model based on the configurational entropy, we suggest that the increasing pressure dependences of the activation volume in isothermal conditions and the negative curvature of the pressure dependences of isothermal longitudinal relaxation times can be related to the formation of antiparallel doublets in the examined liquid crystals. A similar pressure effect on relaxation dynamics may be also observed for other material groups in case of systems, the molecules of which form some supramolecular structures.
منابع مشابه
An Improved ISM Equation of State for Polar Fluids
We developed an equation of state (EOS) by Ihm, Song, and Mason (ISM) for polar fluids. The model consists of four parameters, namely, the second virial coefficient, an effective van der Waals co-volume, a scaling factor, and the reduced dipole moment. The second virial coefficient is calculated from a correlation that uses the heat of vaporization, and the liquid density at the normal boiling ...
متن کاملInvestigation of Thermodynamic Properties of Heavy Metals from Melting and Critical Point Properties
A statistical mechanical based equation of state has been employed to calculate the liquid density of lead, mercury, bismuth and lead-bismuth and lead-lithium eutectic alloys.The equation is basically that of Song, Mason and Ihm [Ihm G, Song Y, Mason EA. J. Chem. Phys.1991; 94: 3839] which is modified by Ghatee and Boushehri. Three temperature dependent parameters are required to use this e...
متن کاملInvestigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals
Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition den...
متن کاملPhase diagram and dynamics of the liquid crystal isopentylcyanobiphenyl (5*CB).
From measurements of the specific volume as a function of temperature and pressure, the phase diagram for the liquid crystal forming isopentylcyanobiphenyl (5*CB) was determined. There are a number of phases (isotropic liquid, glass, cholesteric, and crystalline), and we show that the phase boundaries differ from previous reports, reflecting the slow crystallization kinetics of the system. Usin...
متن کاملEquation of State for Mercury
An analytical equation of state by Song and Mason is developed to calculate the PVT properties ofmercury. The equation of state is based on the statistical-mechanical perturbation theory of hard convexbodies and can be written as a fifth-order polynomial in the density. There exists three temperaturedependentparameters in the equation of state; the second virial coefficient, an effective molecu...
متن کامل